Супрессорный диод защита против напряжения

Супрессорный диод – электронная защита подавлением выброса напряжения

Супрессорный диод – полупроводник TVS (Transient Voltage Supression), как следует из перевода, обеспечивает подавление выбросов напряжения. Этот электронный компонент находит широкое применение в схемах различных современных устройств, включая компьютерное оборудование. Рассмотрим характеристику прибора с целью получения более подробных сведений о функциональности и возможностях.

TVS-диод: характеристика + обзор на супрессорный диод

Кремниевые TVS-диоды характеризуются в первую очередь наличием переход P-N, аналогичного стабилитрону. Однако переход выполнен с большим поперечным сечением, пропорциональным номинальной импульсной мощности супрессорного диода.

Эти электронные компоненты выступают шунтирующими устройствами, способными ограничивать скачки напряжения посредством низкоимпедансного лавинного пробоя P-N перехода.

На картинке ниже показана графическая кривая V — I, сильно напоминающая по форме графическую кривую стабилитрона. Но разница между электроникой здесь в том, что супрессорный диод разработан и предназначен для подавления переходных напряжений, тогда как стабилитрон выполняет функцию регулирования.

Супрессорный диод - вольтамперная характеристика TVS-диода
Графическая кривая электрической вольтамперной характеристики однонаправленного (однополярного) супрессорного диода в процессе действия

Импульсы большой длительности подавляются TVS-диодом за счёт увеличенной площади кристалла и свойств хорошего рассеивания тепла. Пороговые значения напряжения и мощности на супрессорном диоде допустимо увеличивать путём последовательного или параллельного соединения приборов.

Переходный процесс мгновенно шунтируется, что сопровождается не менее быстрым отводом чрезмерно сильного тока от защищаемого устройства. На картинке ниже демонстрируется простейшая схема защиты, где работает супрессорный диод, и результат отвода переходного тока на землю.

Супрессорный диод - демонстрационная схема защиты прибором TVS
Демонстрационная схема работы однополярного TVS-диода: 1 — положительный и отрицательный входные (3) импульсы величиной 8 кВ в момент переходного процесса; 2 – импульсы положительный (12В) и отрицательный (0,6В) фиксированной формы волны на выходе (4)

Как и любой другой электронный компонент, супрессорный диод обладает электрическими характеристиками. Это своего рода набор параметров, определяющих критерии функциональности заключённой внутри прибора схемы.

Супрессорный диод — расшифровка электрических характеристик

Основными показателями электрических характеристик на супрессорный диод являются:

  • напряжение холостого хода (VWM — Stand-Off Voltage)
  • напряжение пробоя (VBR — Breakdown Voltage)
  • ток утечки (ID — Leakage Current)
  • ёмкость (C – Capacitance)
  • прямое напряжение (VF — Forward Voltage)
  • вольтажные ограничения (VC — Clamping Voltage)

Напряжение холостого хода — максимальное длительное постоянное или пиковое значение, которое допускается применять в стандартном диапазоне рабочих температур. Как правило, напряжение холостого хода на 10% ниже аналогичного параметра пробоя.

Напряжение пробоя — значение, измеренное на устройстве при заданном импульсном постоянном токе на характеристической кривой V / I в месте или рядом с местом возникновения пробоя (лавины). Также этот параметр известен как значение на устройстве в области пробоя до точки переключения при заданном токе пробоя.

Ток утечки — максимальный ток, который протекает через супрессорный диод при номинальном противостоянии напряжения холостого хода для заданной температуры. Также этот параметр известен как обратный ток утечки.

Ёмкость – параметр, связанный с применениями, обусловленными высокой скоростью передачи данных. Измеряется при определённой частоте и смещении. Высокий параметр ёмкости ухудшает сигналы.

Прямое напряжение – величина на супрессорном диоде в прямом проводящем состоянии при заданном токе.

Напряжение ограничения – величина на пике, измеренная на устройстве во время приложения импульсного тока для заданной формы волны. Следует иметь в виду: ток утечки и ёмкость не должны оказывать влияние на характеристики цепи.

Супрессорный диод – типичное исполнение приборов

Супрессорными диодами ограничиваются скачки напряжения до уровня допустимой величины при помощи действия шунтирующего вентиля (схемы автоматического шунтирования выхода источника питания).

Супрессорный диод шунтирующего типа начинает проводить, когда пороговая величина превышает допустимую величину.

Супрессорный диод - исполнение электронных приборов
Схематичное исполнение применяемых на практике супрессорных диодов: 1 – однонаправленного действия; 2 – двунаправленного действия; 3 – массив (матрица) управляющих элементов

Напротив, TVS-диод возвращается в непроводящее состояние, если напряжение падает ниже порогового значения. Скачки импульсов отсекаются до безопасного уровня с помощью шунтирования.

Электронные приборы TVS-диоды являются показательными примерами шунтирующих устройств. Существуют две основные категории шунтирующих конструкций:

  1. Ослабляют переходные процессы, предотвращая распространение в чувствительную цепь (стандартные массивы TVS-диодов).
  2. Отводят переходные процессы от чувствительных нагрузок, ограничивая остаточные напряжения (массивы управляющих диодов).

Супрессорный диод + функция шунтирующего действия

Шунтирующие устройства срабатывают в условиях превышения пороговых напряжений, в результате чего создают падение напряжения в открытом состоянии всего на несколько вольт. Этим процессом, собственно, и обусловлено название «шунтирующий вентиль».

Приборы TVS-диоды переходят в непроводящее состояние, когда управляющее напряжение и / или ток уменьшаются в условиях переходного процесса. Примерами устройств на основе шунтирующих вентилей являются газоразрядные трубки (GDT — Gas Discharge Tubes), а также тиристоры.

Большинство супрессорных диодов, которые используются в схемах защиты с низким энергопотреблением, имеют форму волны 8/20 мкс, как показано на картинке ниже. Приборы большой мощности характеризуются формой волны импульсного перенапряжения 10/1000 мкс.

Супрессорный диод - график формы волны импульса для TVS-диода
График формы волны импульса (8/20 мкс): 1 – пиковое значение тока; 2 – временная точка; 3 – параметры формы волны; Ipp – импульсные токи; Tms – значения времени в мкс

Пиковая импульсная мощность на супрессорном диоде может составлять от 30 киловатт до 25 ватт. Номинальная мощность рассчитывается как произведение пикового импульсного тока и напряжения ограничения.

По мере уменьшения ширины импульсного импульса пиковая мощность импульса увеличивается логарифмически. Для более коротких импульсов TVS-диод способен обрабатывать более высокие пиковые импульсные токи.

Пиковая импульсная мощность импульса 3 мкс составляет примерно 1 кВт. Когда импульс скачка увеличивается, как на кривой выше до 10/1000 мкс, пиковая мощность импульса снижается до 60 Вт.

 

Конфигурации корпусов супрессорных диодов доступны различными размерами от больших модулей до миниатюрных изделий. Поддерживается конфигурация под условия поверхностного монтажа. Электронные супрессорные приборы надёжно защищают схемы с одной или несколькими линиями, однонаправленного или двунаправленного хода.


При помощи информации: ProtekDevices