Магнетизм (электромагнетизм): что это такое в теории элементарной физики

Что такое магнетизм (электромагнетизм) в теории элементарной физики

Силу, образующуюся в результате течения электрического тока через проводник (например, через участок провода или кабеля), характеризуют как электромагнетизм. При таких условиях проводник окружает магнитное поле. Направление магнитного поля относительно «северного» / «южного» полюсов определяется направлением тока, текущего через проводник.

Роль электромагнетизма в электротехнике

Магнетизм играет важную роль в электротехнике (электронике). Многие электронные и электрические компоненты:

  • реле,
  • соленоиды,
  • катушки индуктивности,
  • дроссели,
  • катушки громкоговорителей,
  • обмотки электродвигателей,
  • генераторы,
  • трансформаторы,
  • счетчики электроэнергии и прочие,

попросту  не способны работать в условиях отсутствия эффекта магнетизма. По сути, любая катушка, выполненная намоткой провода, даёт эффект электромагнетизма в момент течения электрического тока. Для лучшего понимания магнетизма и электромагнетизма в частности, логично рассмотреть физику работы магнитов и магнетизма.

Какой видится природа магнетизма?

Магнетизм нередко присутствуют в естественном состоянии, например, в виде продуктов добываемой минеральной руды. Причём двумя основными типами элементов природного магнетизма выступают:

  1. Оксид железа (FE3O4).
  2. Магнетитовый железняк (FeO·Fe2O3).

Если указанную пару естественных магнитов подвесить на нить, оба займут положение, соответствующее магнитному полю Земли, которое всегда указывает на север.

Магнитное поле Земли
Полюса Земли лежат в основе эффекта электромагнетизма — явления, с которым приходится сталкиваться не только инженерам-физикам в исследованиях, но также обычным людям в хозяйственной практике

Достаточно наглядно демонстрирует эффект магнетизма стрелка туристического компаса. Относительно практических применений магнетизм природного происхождения редко принимается во внимание.

Обусловлено это низким уровнем эффекта магнетизма, характерным для таких объектов, плюс следует брать в расчёт создание искусственных магнитов. Люди научились делать искусственные магниты разных форм, размеров, силы.

Эффект магнетизма поддерживается объектами двух форм, представляющих:

  1. Постоянные магниты.
  2. Временные магниты.

Причём используемый тип магнита зависит от конкретного применения. Применяется масса различных типов материалов под изготовление магнитов:

  • железо,
  • никель,
  • никелевые сплавы,
  • хром,
  • кобальт,

Что интересно, будучи в естественном состоянии материала, некоторые элементы списка, например, никель и кобальт, демонстрируют крайне низкие величины магнетизма.

Однако если эти элементы «легируются» с другими материалами — пероксидом железа или алюминия, формируются очень сильные магниты, получившие необычные названия:

  • «Alnico»
  • «Alcomax»,
  • «Alni»,
  • «Hycomax».

Материал в немагнитном состоянии имеет молекулярную структуру в виде разрозненных цепочек (отдельных микро-магнитов), свободно расположенных в случайном порядке.

Общий эффект такого расположения приводит к нулевому или очень слабому эффекту магнетизма. Объясняется подобное явление случайным расположением отдельного молекулярного магнита, имеющего тенденцию нейтрализовать соседние молекулы.

Выстраивание магнитного поля в структуре материала
Формирование поля в структуре материала: 1 – хаотичным случайным образом расположенные магнитные домены не дают эффекта магнетизма; 2 – упорядоченные ровно выстроенные домены дают выраженный эффект магнетизма

Когда материал намагничен, случайное расположение молекул изменяется. В итоге микроскопические случайные молекулярные магниты «выстраиваются» последовательным расположением. Этот эффект молекулярного выравнивания ферромагнитных материалов известен как теория Вебера.

Магнитное выравнивание молекулы куска железа

Теория Вебера основана на магнитных свойствах атомов благодаря действию вращения атомов электронов. Группы атомов объединяются, а магнитные поля вращаются в одном направлении. Материалы составляют микроскопические магниты на молекулярном уровне.

Структура большинства намагниченных материалов состоит из микроскопических элементов, выстроенных в одном направлении для создания только северного полюса и в другом направлении для создания южного полюса.

Материал, в структуре которого молекулярные магниты сосредоточены по всем направлениям, имеет «нейтральные» молекулярные частицы, нейтрализующие любой эффект магнетизма. Эти области молекулярных магнитов именуются «доменами».

Любому материалу характерно создание орбитальных и вращающихся электронов магнитного поля, полностью зависящего от степени выравнивания доменов в материале. Эта степень выравнивания, как правило, определяется величиной намагниченности (М).

Магнетизм и магнитный поток в катушке
Схематичная демонстрация формирования силовых линий: 1 – индуцируемый ток в рабочем материале; 2 – течение тока внутри проводников катушки; 3 – магнитное поле

Внутренняя структура немагнитного материала показывает М = 0. Однако некоторые из доменов могут оставаться выровненными по границам небольших областей в материале. Эффект приложения намагничивающей силы к материалу заключается в выравнивании некоторых доменов для получения ненулевого значения намагничивания.

Как только сила намагничивания нейтрализована, магнетизм внутри материала остаётся на некотором уровне, либо быстро затухнет в зависимости от используемого материала. Эта способность материала сохранять свойство магнетизма называется «Остаточная намагниченность».

Материалы, обладающие свойствами сохранения магнетизма, демонстрируют достаточно высокую способность к остаточной намагниченности, а потому часто используются для изготовления постоянных магнитов. В то же время материалы, обладающие свойством быстрой потери магнетизма, демонстрируют низкую способность остаточной намагниченности. Из таких материалов, изготавливают, к примеру, сердечники для реле и соленоидов.

Что такое магнитный поток?

Любым магнитам, независимо от формы, присуще характерное свойство — наличие пары полюсов. Внутренний магнетизм и молекулярные цепи полюсов образуют своеобразную цепочку невидимых линий потока организованной и сбалансированной структуры.

Эти линии потока образуют магнитное поле. Форма такого поля в некоторых частях более интенсивная, чем в других. Причём область магнита (традиционно концевая), обладающая наибольшим уровнем магнетизма, являются активной областью полюса.

Магнетизм и магнитные полюса
Примерно такой вид формирования полей можно наблюдать (с помощью специальной техники) в области двух сближаемых противоположными полюсами магнитов

Линии потока — векторные поля, не видны невооруженным глазом, но доступны к определению, например, с помощью компаса. Полюса всегда присутствуют парами. Всегда существует область «северного» полюса и область «южного» полюса.

Поля отображаются визуально силовыми линиями, определяющими полюс на каждом конце материала, где линии потока более плотные и концентрированные. Линии, образующие поле, показывающие направление и степень интенсивности, называются силовыми линиями (магнитным потоком). Традиционно такой поток обозначается греческим символом «Фи» (φ).

Силовые линии определяющие эффект магнетизма

Как показано выше, магнитное поле является наиболее сильным вблизи полюсов магнита, где линии потока расположены близко друг к другу. Общее направление потока – традиционно от северного полюса (N) к южному (S) полюсу. Кроме того, силовые линии образуют замкнутые петли, выходящие на северный и на южный полюс.

Однако магнитный поток не течёт с «севера» на «юг» полюсов или каким-либо другим образом, поскольку является статической областью, окружающей магнит, где отмечается действие магнитной силы.

Другими словами, поток не течёт и не движется в принципе, а попросту существует, будучи не подверженным влиянию гравитации. Следующие важные факты магнетизма сопровождают построение силовых линий:

  • силовые линии не пересекаются и не прерываются,
  • силовые линии всегда образуют отдельные замкнутые петли,
  • силовым линиям магнетизма характерно направление с «севера» на «юг»,
  • близкое расположение силовых линий указывает на сильный магнетизм,
  • удалённое расположение силовых линий указывает на слабый магнетизм.

Силы магнетизма притягивают и отталкивают подобно электрическим силам, поэтому сближение двух силовых линий (взаимодействие между двумя полями) вызывает одно из двух явлений магнетизма:

  1. Отталкивание полюсов.
  2. Притягивание полюсов.
Магнетизм - взаимодействие между магнитными полями
Эффект взаимодействия между полями с учётом разного расположения относительно полюсов: 1 – разноимённые полюса вызывают эффект притягивания; 2 – одноимённые полюса вызывают эффект отталкивания; 3 – направление силовых линий

Этот эффект легко запоминается благодаря известному выражению «противоположности притягиваются». Это взаимодействие магнитных полей, показывающие силовые линии окружающие магнит, легко продемонстрировать, используя железные наполнители. Влияние на магнитные поля различных комбинаций полюсов, когда одинаковые полюсы отталкиваются и в отличие от полюсов притягиваются, показано на картинке выше.

Магнитное поле одноименных и разноименных полюсов

Анализ линий магнитного поля с помощью компаса позволяет видеть, что созданием силовых линий придаётся определённый полюс на каждом конце магнита. Эффект магнетизма может быть нарушен нагреванием или ударом магнитного материала, но магнетизм невозможно уничтожить или изолировать, простым разделением магнита на две части.

Поэтому, если используя обычный стержневой магнит, разбить тело этого объекта на две части, двух половинок одного магнита получить не удастся. Вместо этого каждая часть слома образует полноценный магнит, наделённый «северным» и «южным» полюсами.

Продолжением разделения пополам других полученных частей приведёт к тому же результату. Независимо от того, насколько маленькими становятся кусочки магнита, у каждого кусочка будет формироваться «северный» и «южный» полюс, соответственно.

Определение величины магнетизма

Как отмечалось ранее, силовые линии (магнитный поток) магнитного материала обозначается греческим символом «Фи» (φ). Под единицей измерения потока используется Вебер (латинское обозначение Wb, русское – Вб). Число силовых линий в пределах данной единичной области называется «плотностью потока».

Поскольку магнитный поток измеряется в Веберах, а площадь в метрах квадратных, следовательно, плотность потока измеряется отношением Вб / S и обозначается латинским символом — B.

Однако когда речь идет о магнетизме, плотность потока задается в единицах Тесла, поэтому один Вб / S равен одному Тесла (1Вб / 1м2 = 1T). Плотность потока пропорциональна силовым линиям и обратно пропорциональна площади. Отсюда плотность магнитного потока определяется как:

B = φ / S

Пример определения силы магнетизма

Количественный показатель магнитного потока, присутствующего в круглом магнитном стержне, равен 0,06 Вб. Какая плотность магнитного потока, если диаметр стержня магнита равен 24 см? Решение:

Сначала определяется площадь поперечного сечения стержня (в м2):

S = π * R2 (3.14 * 0.122) = 0.045

Далее рассчитывается плотность магнитного потока (в Тесла):

B = φ / S = 0. 06 / 0.045 = 1.33

Если применительно к магнетизму электрических цепей 1Т — это плотность магнитного поля, проводник, несущий ток 1А под прямым углом к магнитному полю, испытывает нагрузку магнитной силы в один ньютон на метр.


При помощи информации: ElectronicsTutorials


Добавить комментарий

Внимание: Спам не пройдёт. Работает фильтрация комментариев. *