Реверс твердотельными реле + схема коммутации электродвигателей

Реверс твердотельными реле в схемах коммутации электродвигателей

Некоторые виды моторной нагрузки требуют применения электрических схем, которыми обеспечивается реверс движения ротора электродвигателя. Для такой практики характерным является не просто многократный запуск и останов мотора, но также необходимо менять — реверсировать направление хода вала ротора. То есть актуальным становится управление электромотором в несколько усложнённом варианте. Современными схемами управления электродвигателями применяется реверс твердотельными реле, что видится удобным и практичным. Рассмотрим такие варианты.

Реверс электродвигателя + принцип организации рабочей схемы

На картинке ниже показана классическая электрическая схема коммутации (в том числе реверс) трёхфазного электродвигателя через контактор. Здесь, если катушка любого из контакторов находится под напряжением, три фазы сети переменного тока поступают на обмотки статора двигателя через замкнутые линейные цепи контактора.

Так обеспечивается вращение ротора электромотора в одном направлении. Будучи в таком состоянии, ротор продолжает вращаться с постоянной скоростью и направлением до момента размыкания коммутационных линий контактора (съёма напряжения с катушки).

КОНТАКТОРЫ

Реверс твердотельными реле - схема традиционная на контакторах
Традиционная схема коммутации электромотора (включая реверс): К1…К3 – кнопки управления (откл, вкл, реверс); АВ – автоматический выключатель сети; КН1…КН2 – контакторы; ТР – тепловое реле; ТРМ – терминал подключения мотора; Э1 — электромотор

Если перед повторным включением мотора поменять подключения любых двух фаз питающей линии переменного тока на контакторе (например, подключить фазу L1 на клемму № 2, фазу L2 на клемму № 1), ротор электродвигателя получит обратный (реверсный) вращательный момент.

Конечно, физически реверсировать электрические соединения на контакторе каждый раз, когда требуется получить реверс ротора электродвигателя, видится действием непрактичным и неудобным. Следовательно, логично автоматизировать процесс реверса с учётом команд контроллера управления системой, направленных на реверсирование.

Традиционно для этого использовались дискретные компоненты:

  • несколько механических реле,
  • трёхфазный контактор с реверсивным двигателем.

Однако механические решения имеют те же недостатки, что и любое электромеханическое устройство. Наиболее значительным из этих недостатков является ожидаемый срок службы, особенно для применений, где электродвигатель неоднократно включают — выключают для достижения определённого положения.

Реверс твердотельными реле + схемные решения для электродвигателя

Одно из возможных решений на реверсирование электродвигателя, устраняющее проблемы, связанные с механическими контактами, — это использование нескольких однофазных твердотельных реле. Как демонстрируется картинкой ниже, фазный провод L1 сети переменного тока подключен непосредственно на клемму статора двигателя.

ОДНОФАЗНЫЕ

Реверс твердотельными реле - схема на однофазных приборах
Вариант схемного решения организации управления электродвигателем с возможностью функции реверса посредством группы однофазных твердотельных реле: П1…П5 — предохранители; ОТР1…ОТР4 — однофазные твердотельные реле; Э1 — асинхронный электродвигатель

Исходя из той же приведённой схемы, однофазные твердотельное реле ОТР1 и ОТР3 подключают фазы L2 или L3 на вторую клемму статора электродвигателя. Однофазное твердотельное реле ОТР2 и прибор ОТР4 подключают фазы L2 или L3 на третью клемму статора.

Когда приборы ОТР1 и ОТР2 находятся под напряжением, ротор электродвигателя вращается в одном направлении. Для получения реверса приборы ОТР1 и ОТР2 обесточиваются. Вместе с тем, приборы ОТР3 и ОТР4 активируются, эффективно меняя местами фазы L2 и L3 на контактных выводах обмоток статора.

Реверс однофазными релейными приборами — примечания

Важными являются примечания относительно использования нескольких ОТР в случаях реверсирования электродвигателя:

  • Электромоторы для работы реверсом обычно механически более устойчивы из-за требований, предъявляемых к двигателю. Однако электрически неизбежны проблемы, характерные для асинхронных электромоторов простого применения с пуском / остановом.
  • Система, управляющая твердотельными реле, требует создания цепи блокировки на предотвращение одновременного включения «прямого» и «реверсного» реле. Несоблюдение этого требования может привести к межфазному короткому замыканию через реле, что крайне опасно для системы.
  • Твердотельное реле с внутренней защитой от перенапряжения нельзя использовать в системах с реверсом электродвигателя. Внутренний TVS-диод может включать выход прибора, когда тот подвергается электрическому переходному процессу. Результат — межфазное короткое замыкание. Металлооксидный варистор допустимо размещать на выходе каждого прибора для обеспечения защиты от переходных процессов.
  • Пятый прибор может использоваться для переключения третьей фазы электродвигателя, если этого требует применение. Необязательно использовать реле частью цепи блокировки напрямую, но прибор нужно питать одновременно с «прямым» или «реверсным» реле. Так исключается возможность повреждения электродвигателя при подаче напряжения только на две фазы.

Другое (предпочтительное) эффективное решение на реверс асинхронного электродвигателя — трёхфазное твердотельное реле с функцией реверсирования, как часть общей схемы управления.

Реверс твердотельными реле + схема на трёхфазный электродвигатель

Трёхфазное коммутирующее устройство с реверсом двигателя отличается двумя существенными преимуществами по сравнению с методикой применения отдельных однофазных твердотельных реле:

  1. Все четыре однофазных устройства, по сути, содержатся в одном стандартном корпусе ТТР, что минимизирует количество схемных соединений.
  2. Схема защитной блокировки встроена внутрисхемно на трёхфазном твердотельном реле с реверсом.

Как видно на картинке ниже, две из трёх фаз подключены через прибор типа D53RV с функцией реверса двигателя, тогда как третья фаза подключена непосредственно к статору мотора. Когда логический сигнал подается на управляющую клемму «вправо», ТТР переключает фазы L1 и L2 непосредственно на обмотку статора.

ТРЁХФАЗНЫЕ

Реверс твердотельными реле - схема на трёхфазном приборе с функцией реверсирования
Пример организации схемы —  реверс твердотельными реле  (типа D53RV) асинхронного электродвигателя: П1…П3 – линейные предохранители; МОВ1…4 – металлооксидные защитные варисторы; ТТР1 – твердотельное реле на три фазы типа D53RV (Crydom); Э1 – электромотор асинхронный

Когда же управляющий сигнал снимается с клеммы «вправо» и подаётся на клемму «влево», схемой ТТР переключается соединение фаз L1 и L2, что приводит к реверсу вала ротора электродвигателя. Если логический управляющий сигнал одновременно подаётся на клеммы «вправо» и «влево», ТТР отключится или останется выключенным.

Схема допускает добавление внешних металлооксидных варисторов для обеспечения дополнительной защиты в условиях перенапряжения, если таковые не включены внутрисхемно на реверсивном приборе ТТР.

Однако установка металлооксидных варисторов зависит и от особенностей схемы. Как демонстрируется на картинке выше, твердотельное реле с реверсом имеет четыре отдельные выходные цепи для обеспечения функции реверса хода ротора.

 

Соответственно, такое схемное построение требует включения четырёх металлооксидных варисторов (независимо, встроены варисторы внутрисхемно в реле с реверсом или нет). Кроме того, по аналогии с другими электрическими цепями, здесь требуются надлежащие предохранители, и соответствующее автоматическое отключение от сети переменного тока на случай аварии.


При помощи информации: Crydom