Позистор определение электронного элемента + схемы

Позистор: определение электронного элемента + схемы включения прибора

Титанат бария (BaTiO3) — сегнетоэлектрическое вещество, впервые определённое (идентифицированное) учёными в 1944 году. Удельное сопротивление титаната бария при комнатной температуре становится полупроводником с контролируемой валентностью n-типа, обладающим сопротивлением 1 -106 Ом * см. Но для этого титанат бария необходимо дополнить небольшим количеством редкоземельных элементов. Впервые нечто подобное учёные изготовили в 1951 году. А спустя ещё десять лет (в 1961 году), существующую базу радиодеталей дополнил позистор – электронный компонент, запущенный в массовое производство.

Позистор – описание функциональности электронного элемента

Позистор — фактически термистор, обладающий положительным температурным коэффициентом (термистор PTC). Если для стандартного термистора обычным явлением отмечается уменьшение сопротивления с увеличением температуры, позистор действует несколько иначе.

Сопротивление термистора PTC (позистора) резко возрастает, когда температура прибора превышает определённое значение. По сути, позистор увеличивает значение сопротивления при повышении температуры.

Позистор имеет сопротивление — температурные характеристики, которые вызывают экспоненциальное увеличение сопротивления, когда температура детали превышает температуру точки Кюри. То есть имеет место критический температурный фон, при котором значение сопротивления резко возрастает.

Как правило, в условиях температуры выше точки Кюри, сопротивление позистора увеличивается со скоростью от 15% до 60% на один градус Цельсия. Существует много различных точек Кюри (от 40 до 280ºC), что делает возможным легко выбрать подходящий вариант позистора для конкретного применения.

Таблица: температурная характеристика и точки Кюри позисторов

Температурная характеристика Точка Кюри (С.P.), ºC
AD 280
AE 260
AF 240
AG 220
AH 200
AK 180
AL 170
AM 160
AN 150
AP 140
AS 130
AR 120
BA 110
BB 100
BC 90
BD 80
BE 70
BF 60
BG 50
BH 40
T -50

Ряд специальных позисторов представлен продуктами с точкой Кюри ниже значений комнатной температуры. Эти приборы демонстрируют более линейную скорость увеличения сопротивления — до 5% на градус выше точки Кюри.

Если резистор соединен с позистором последовательно или параллельно, характеристики сопротивления-температуры элемента несколько изменяются. В случае, когда позистор используется для температурной компенсации, например, транзистора – такой метод видится полезным для получения подходящих температурных характеристик.

Напряжение — текущие характеристики (статические характеристики)

Позистор может использоваться в качестве нагревателя постоянной температуры с функцией автоматической регулировки температуры. При этом прибор поддерживает постоянную мощность, независимо от колебаний напряжения, если пропускаемый ток поддерживается выше максимального значения тока прибора.

Позистором обеспечивается защита от перегрузки по току, если прибор включен в цепь последовательно. Когда ток, проходящий через позистор меньше максимального значения тока, указанного в спецификации как «защитный ток», позистор действует подобно обычному резистору с фиксированным значением.

Если же параметр тока превышает защитное значение, прибор резко увеличивает сопротивление по причине «саморазогрева», чем уменьшает ток, обеспечивая тем самым защиту рабочей цепи.

При добавлении к позистору включенного последовательно или параллельно резистора, фольт-амперная характеристика тока меняется. В качестве примера можно рассмотреть резистор, включенный параллельно позистору, что обеспечивает функцию постоянного тока с увеличением напряжения.

При подаче напряжения и протекании тока отмечается «саморазогрев» прибора. Если протекающий ток превышает точку максимального тока, «саморазогрев» приводит к превышению точки Кюри, сопротивление резко возрастет.

До момента, пока отмечается максимум тока, прибор стабилизируется выше точки Кюри, поддерживая высокое сопротивление. Когда ток уменьшается ниже точки максимального тока, «саморазогрев» также уменьшается до значения ниже точки Кюри, при условии отсутствия внешнего источника тепла.

Позистор — времятоковые характеристики (динамические характеристики)

Если к прибору приложено определённое напряжение, приводящее к превышению точки максимального тока, позистор пропускает большие токи, учитывая низкое сопротивление.

Соответственно, прибор разогревается до температуры, превышающей точку Кюри, когда сопротивление позистора резко увеличится. Благодаря такой функциональности, ток, в конечном итоге, стабилизируется на постоянном уровне.

Если начальное приложенное напряжение увеличивается, время, необходимое для разогрева позистора за пределами точки Кюри уменьшается из-за большего тока, чем вызывается более быстрый разогрев. Если последовательно или параллельно подключен резистор, отмечается изменение динамических характеристик.

Позистор – структурное исполнение и применение

Свинцовые изделия обычно имеют элемент, припаянный к свинцовым проводам, поверхность которого покрыта эпоксидной смолой. Либо элемент может удерживаться на месте с помощью пружинных клемм и заключаться в пластиковый корпус.

В последнем случае пружинные контакты обеспечивают электрическое соединение и выход контактных клемм из корпуса. Форменное исполнение приборов традиционно квадратное или круглое. Также более современная форма исполнения — тип чипа, получает в последнее время широкое распространение.

Позистор - физическое и структурное исполнение прибора
Типичное исполнение приборов: A – PRG или PRF; B – PTGL; С – PTFM; D – PTH6M/7M; E – PTWSB; 1 – керамика барий-титаната; 2 – терминал; 3 – резиновая оболочка; 4 – пайка; 5 – свинцовые проводники; 6 – покрытие; 7 – корпус; 8 – пружинный терминал; 9 – терминал; 10 – излучающая пластина и терминал

Применение позистора отмечается в самых разных случаях, например:

  • регулировка температуры нагревателей,
  • температурная компенсация,
  • температурный контроль электрооборудования,
  • индикация и защита от сверхтоков,
  • задержка цепи и контроль пускового тока,
  • запуск бесконтактным стартером.

Так, позистор может использоваться в качестве саморегулирующегося нагревателя с постоянной температурой. Этот элемент не требует термостата для контроля температуры, плюс защищает от ненормального повышения температуры с последующим отказом. Постоянная температура может поддерживаться переменным приложенным напряжением.

В другом примере позисторы-пеллеты монтируются на алюминиевый радиатор воздушного отопления. Мощность и температуру легко регулировать, изменяя скорость вентилятора, которым воздух протягивается сквозь радиатор.

Энергетические характеристики, кроме всего прочего, меняются при изменении температуры окружающей среды. Когда температура окружающей среды снижается, мощность увеличивается. Когда температура окружающей среды увеличивается, мощность уменьшается.

Возможен контроль постоянной температуры, если позистор подключен к другому нагревателю последовательно. Этот же прибор можно использовать для обнаружения изменения температуры другого нагревателя, а также изменения температуры окружающей среды.

Позистор как датчик температуры и температурной компенсации

Ниже показана принципиальная схема температурной компенсации. При смещении транзистора используется сопротивление позистора. Если транзистор перегреется, соответственно позистор также нагревается. Когда нагрев превысит точку Кюри, прибор перейдёт в режим высокого сопротивления, смещая цепь и отключая транзистор.

Позистор - схемы температурной компенсации
Схемные решения, где используется позистор (оранжевый на картинке), направленные на достижение температурной компенсации и защиты транзистора. 1 – базовая схема температурной компенсации; 2, 3 – схематичные варианты датчиков перегрева

При использовании позистора в качестве датчика перегрева, когда требуется температурная компенсация, прибор не изменяет входное сопротивление подобно термистору с отрицательным температурным коэффициентом, учитывая последовательное подключение к входной цепи. Это подходящий вариант для цепей, не требующих изменения входного сопротивления, например в качестве:

  • импульсных цепей,
  • регионального усилителя,
  • измерительного оборудования.

Более чем два расположенных позистора способны покрывать несколько активных участков работы с компаратором.

Ниже показана принципиальная схема подключения нескольких позисторов последовательно. Когда один обнаруживает, по крайней мере, перегрев, микросхема компаратор демонстрирует резкую характеристику температурного сопротивления. Это позволяет легко изменять количество позисторов или измерять температуру в составе одной базовой схемы.

Позисторная схема температурной компенсации с компаратором
Пример схемы температурной компенсации с применением канала регулятора на микросхеме и включением в качестве температурных датчиков сразу нескольких электронных элементов типа позистор

Рассматриваемый электронный элемент также удачно может использоваться для определения перегрева:

На картинке ниже демонстрируется пример определения перегрева двигателя и последующего за этим событием отключения мотора с помощью реле.

Позистор и схемы защиты различных устройств
Схемные решения под организацию защитных функций с помощью позистора: A – для защиты мотора; B – для защиты мощного ключевого транзистора; C – для защиты обмотки трансформатора; Голубой – источник питания; Жёлтый – мощный транзистор; Оранжевый — позистор

Для вариантов с небольшими регулярными рабочими токами блокировка цепи может осуществляться непосредственно позистором. Для вариантов больших постоянных рабочих токов цепь дополнительно оснащается блокировочным реле или тиристором.

Позистор как электронный компонент текущего контроля

Ниже показана реализация простейшего решения температурного индикатора. Температура измеряется позистором. Если заданная температура превышена, загорается неоновая лампа. Если превышено предельное значение тока цепи, прибор способен реагировать на более высокий ток и быстро защищать цепь.

Позистор в схеме индикации на неоновой лампе
Простейшая схема индикации: A – вариант включения параллельно с неоновой лампой; B – вариант включения последовательно с неоновой лампой; Голубой – источник питания; Синий – неоновая лампа; Оранжевый — позистор

Функцию задержки вполне допустимо реализовать использованием динамических характеристик описываемого электронного компонента — позистора. Есть два метода:

  1. Подключение параллельно с реле.
  2. Последовательное соединение с реле.

Допустимо также организовать контроль пускового тока с помощью позистора. Импульсный источник питания, как правило, имеет большой пусковой ток при первом включении.

Схема управления реле через позистор
Возможные схемные решения, направленные на управление реле, при помощи которого, в свою очередь, осуществляются необходимые функции, такие как задержка или блокировка по перегреву

Если использовать позистор вместо резистора или термистора NTC, достигается функция ограничителя пускового тока. Элемент нагревается по причине перегрузки по току в случае отказа реле или тиристора и срабатывает при высоком сопротивлении, быстро блокируя течение тока.

Также видится практичным применение позистора в схеме запуска мотора, будучи использованным в качестве бесконтактного стартера, например, компрессоров:

  • холодильников,
  • морозильников,
  • кондиционеров и подобных систем,

позистор способствует получению сильного пускового момента.

Определения типичных терминов позисторов

Ниже даны определения терминологии, с которой приходится сталкиваться на случай использования в работе позисторов:

  1. Начальное сопротивление (например, R25) — значение сопротивления элемента при 25°С, измеренное в условиях 1,0 В постоянного тока или менее, при токе 10 мА или менее без самонагревания.
  2. Точка Кюри (C.P.) – характеристика сопротивления и температуры.
  3. Максимальное рабочее напряжение – значение напряжения, которое может подаваться непрерывно.
  4. Выдерживаемое напряжение — максимальное напряжение, которое элемент способен выдержать в течение трёх минут, при T=25ºC.
  5. Коэффициент тепловыделения (D) — количество тепла, теряемого за единицу времени, исходя из разницы температур 1°С между нагревательным элементом и температурой окружающей среды.
  6. Тепловая постоянная времени (γ, сек) — время, необходимое для достижения разницы температур в 0,632 раза между T0 и T1. Рассчитывается формулой γ = H / D, где: D — коэффициент тепловыделения (Вт/град. С), H — теплоёмкость (Вт/град. С).
  7. Рабочая точка — условие равновесия между разогревом элемента и внешним радиатором.

Недопустимое применение позисторов на практике

Учитывая слабую герметичность структуры описываемого электронного элемента, не допускается применять позисторы в определённых условиях. Использование в таких условиях сопровождается снижением характеристик, что приводит к отказу прибора в виде короткого замыкания.

  • наличие в окружающей атмосфере агрессивных газов (Cl2, NH3, SOx, NOx и т. п.);
  • наличие летучей, легковоспламеняющейся газовой атмосферы;
  • области пылевого накопления;
  • воздух под давлением или вакуумная атмосфера;
  • прямой контакт с водой или высокой влажностью;
  • воздействие солей, жиров, химикатов, органических растворителей;
  • области повышенных вибраций.

Видео по теме: как читать электронные схемы начинающим

Видеоролик ниже показывает своего рода практический пример чтения электронных схем, что является актуальным для начинающих электронщиков. Возможно, этот пример несколько обогатит знания и поможет разобраться в любой схеме в будущем:


При помощи информации: muRATA