Датчик температуры – характеристика прибора электроники

Датчик температуры – традиционная составляющая электроники

Наиболее часто в области электроники находят применение датчики определения значений температуры окружающей среды. Такого типа датчик температуры представлен приборами от простых термостатических включателей-выключателей, контролирующих систему нагрева воды, до высокочувствительных полупроводников, управляющих сложными технологическими установками. Рассмотрим существующие варианты конструкций температурных датчиков, которыми наделяется современная электроника, а также электрические системы.

О температурных датчиках в целом

Разработано и выпускается под применение обширное разнообразие температурных сенсоров. Датчик температуры как таковой обладает разными характеристиками, исходя из цели фактического применения. Между тем, датчик температуры в любом случае представляет устройство одного из двух физически выполненных типов:

  1. Контактный.
  2. Бесконтактный.

Контактным температурным датчикам присуща физическая связь с измеряемым объектом, как присущ эффект проводимости в момент контроля изменений. Датчик температуры контактного вида используется, как правило, для контроля твердых веществ, жидкостей, газов в широком температурном диапазоне.

Бесконтактный датчик температуры действует по принципу конвекции (излучения) для контроля температурных изменений. Приборы такого исполнения пригодны под контроль жидкостей и газов, излучающих лучистую энергию с повышением температуры. Или же допустим принцип излучения энергии объектом инфракрасного излучения.

Помимо этой классификации, оба типа температурных датчиков подразделяются по исполнению на устройства:

  • электромеханические,
  • резистивные,
  • электронные.

Датчик температуры — термостатическая конструкция (термостат)

Термостат является электромеханическим температурным датчиком (выключателем контактного типа). Основа конструкции термостата — два разных металла (например, никель и медь или вольфрам и алюминий и т.п.), соединенные вместе, образующие биметаллическую пластину.

Различные скорости линейного расширения двух разнородных металлов способствуют механическому изгибающему движению, когда биметаллическую пластину подвергают нагреванию.

Биметаллическую пластину допустимо использовать как электрический выключатель или как механический способ управления электрическим выключателем в термостатических элементах управления. Подобный датчик температуры широко используется для управления нагревом воды:

  • котлов,
  • печей,
  • резервуаров,
  • радиаторов транспортных средств.

Датчик температуры — биметаллический термостат

Биметаллический термостат состоит из двух термически различных металлов, плотно связанных один с другим. Момент, когда датчик температуры находится в холодной среде, контакты замкнуты, становится моментом прохождения тока через образованную цепь.

ДАТЧИКИ

Конструкция биметаллического датчика
Датчик температуры контактного типа: 1 – электрический контакт 1; 2 – биметаллическая пластина; 3, 4 – различные металлы; 5 – контактная площадка; 6 – электрический контакт 2; 7 – направление деформации биметалла; 8 – разомкнутая цепь; 9 – поток тепла; 10 – точка крепления

Если же конструкция термостата нагревается, один из металлов расширяется больше, чем другой за счёт разницы коэффициентов расширения структуры. Биметаллическая пластина сгибается (или разгибается), разрывает контакты цепи, препятствует протеканию тока.

Существуют два основных типа биметаллических термостатов, основанных главным образом на движении биметаллических пластин при изменении температуры. При этом есть устройства мгновенного действия и замедленного действия. Первые отличаются быстротой реакции на температурные изменения, вторые обладают замедленным (плавным) действием.

Термостаты мгновенного действия часто можно встретить в конструкциях бытовых приборов:

  • духовок,
  • утюгов,
  • резервуаров воды,
  • систем внутреннего отопления.

Термостаты замедленного действия состоят из биметаллической спирали, которая медленно разжимается или сжимается при изменениях температуры. Как правило, биметаллические пластины замедленного действия более чувствительны к изменениям окружающей среды, благодаря чему более приемлемы для использования в калибровочных, циферблатных и аналогичных датчиках.

Приборы быстрого действия дёшевы и доступны в широком диапазоне рабочих характеристик. Однако быстродействующие термостаты характерны увеличенным диапазоном гистерезиса (зона между закрытием/открытием контакта). Например, термостат отрегулирован на 20ºC, но фактически открывается при 22ºC и закрывается при 18ºC.

Термистор как датчик измерения температуры

Термистор тоже относится к ряду температурных датчиков. Название «термистор» сформировано комбинацией двух слов «термический» и «резистор». Таким образом, это необычный тип резистора, способного менять физическое сопротивление под внешним температурным воздействием.

ТЕРМИСТОРЫ

Термисторы
Классическое исполнение термисторов. Именно в таком виде этот вид электронных компонентов чаще всего встречается в составе электронных плат различных приборов, с указанием на корпусе класса температурного коэффициента

Термисторы обычно изготавливаются на основе керамических материалов:

  • оксида никеля,
  • марганца,
  • кобальта.

Сверху материал термистора покрыт тонким слоем стекла. Основным преимуществом термисторов над переключающими приборами является скорость реакции на малейшие изменения температуры, точность и стабильность действия.

Большинство термисторов наделены отрицательным температурным коэффициентом сопротивления (NTC). То есть в этом варианте исполнения значение сопротивления термистора снижается с увеличением температуры.

Вместе с тем выпускаются термисторы, наделённые положительным температурным коэффициентом (PTC). Значение сопротивления  в этом случае, соответственно, увеличивается с повышением температуры окружающей среды.

Полупроводниковый материал термистора обычно формируют мелкими прессованными дисками или шарами, тщательно герметизированными, чтобы обеспечивалась относительно быстрая реакция на малые колебания температуры.

Термисторы оцениваются следующими показателями:

  • резистивным значением при комнатной температуре (25°C),
  • постоянной времени (время реакции),
  • номинальной мощностью по отношению к проходящему току.

Как и постоянные резисторы, датчик температуры — термистор, наделяется значениями сопротивления при комнатной температуре в диапазоне от нескольких Ом до десятков МОм.

Для целей измерения, как правило, используются экземпляры, имеющие сопротивление в несколько кОм.

Термисторы следует рассматривать пассивными резистивными устройствами. То есть, чтобы получить измеримое выходное напряжение, необходимо через этот датчик температуры пропускать электрический ток.

При построении схем термисторы обычно соединяются последовательно с резистором смещения для формирования делителя потенциалов. Подбором конкретного резистора определяется выходное напряжение в некоторой заранее определенной точке температуры.

Пример схематический термисторного сенсора

На схеме примера термистор имеет значение сопротивления 10 кОм при 25ºC и значение сопротивления 100 Ом при 100ºC. Нужно рассчитать падение напряжения на термисторе и, следовательно, выходное напряжение (Vвых) для обеих температур при последовательном соединении с резистором 1 кОм через источник питания 12 В.

ТЕРМОМЕТР

Схема включения датчика
Датчик температуры (термистор) и схема включения: +V – напряжение питания (12 В); R1 – термистор с отрицательным температурным коэффициентом; R2 – резистор смещения; V темп – напряжение, соответствующее конкретной температуре; ОУ – операционный усилитель; V вых – напряжение выхода

Пример расчёта под Т= 25ºС, R2=10 кОм, при напряжении питания схемы 12 В:

V вых = R2 / (R1 + R2) * xV;

В цифрах:  (1000 / (10000 + 1000) * x * 12 = 1.09 В

Пример расчёта под Т= 100ºС, R2=100 Ом, при напряжении питания схемы 12В:

В цифрах:  (1000 / (100 + 1000) * x * 12 = 10.9 В

Изменяя фиксированное значение резистора R2 (в примере 1 кОм) потенциометром или предварительной установкой, можно получить выход напряжения при заданной температуре.

Например, если на выходе напряжение 5 В соответствует 60°С, тогда изменением потенциометром конкретного уровня выходного напряжения можно получить  более широкий температурный диапазон.

Между тем, термисторы являются нелинейными устройствами. Стандартные значения сопротивления при комнатной температуре различны для отдельных термисторов. Это обусловлено, главным образом, полупроводниковыми материалами, из которых приборы сделаны.

Термистор реагирует на экспоненциальное изменение и, следовательно, имеет константу бета-температуры, которая может быть использована для расчета сопротивления под любой заданный параметр окружающей среды.

Однако при использовании в схеме с последовательным резистором (например, в делителе напряжения или устройстве с мостом Уитстона) ток, полученный в ответ на напряжение, подаваемое на делитель (мост), линеаризуется с температурой. Соответственно, выходное напряжение на резисторе также линеаризуется.

Датчик температуры резистивный типа RTD

Другим типом измерительного датчика с электрическим сопротивлением является резистивный датчик температуры (RTD). Это прецизионные измерительные приборы, изготовленные из высокочистых проводящих металлов:

  • платины,
  • меди,
  • никеля.

Электрическое сопротивление таких приборов изменяется в зависимости от температуры, аналогично термистору. Также доступны тонкопленочные RTD. Такого типа устройства имеют тонкую пленку платиновой пасты, осажденную на белую керамическую подложку.

БИМЕТАЛЛ

Резистивный температурный датчик
Структурная схема на резистивный датчик температуры: 1 – свинцовая пломба; 2 – оболочка зонда; 3 – изолированный пакет проводов; 4 – RTD сенсор; 5 – термо-карман; 6 – пружинные крепления; 7 – съёмный стопор; 9 – терминальный блок; 9 — наконечник

Резистивные датчики температуры имеют положительные температурные коэффициенты (PTC), но в отличие от термистора, выход этих приборов предельно линейный. Поэтому получаются очень точные параметры измерения.

Тем не менее, приборы PTC имеют очень слабую тепловую чувствительность. То есть изменение температуры приводит к очень малым изменениям на выходе, например, 1 Ом на градус. Широко распространённые RTD сделаны на основе платины и называются «Platinum Resistance Thermometer» — PRT. Часто встречающийся представитель PRT — датчик Pt100.

Прибор обладает стандартным значением сопротивления 100 Ом при 0ºC. Однако платина как материал — дорогостоящая, соответственно этот тип устройства также является дорогостоящим. Как и термистор, RTD пассивные резистивные устройства.

Путём пропускания постоянного тока через этот тип датчика можно получить выходное напряжение, линейно возрастающее с температурой. Типичный RTD имеет базовое сопротивление около 100 Ом при 0ºC, увеличиваясь примерно до 140 Ом при 100ºC. Общий поддерживаемый диапазон рабочих значений RTD простирается от -200 до + 600ºC.

Поскольку RTD является резистивным устройством, необходимо пропускать через него ток и контролировать результирующее напряжение. Тем не менее, любая вариация сопротивления, обусловленная нагреванием резистивных проводников при протекании через них тока (Закон Ома) вызывает ошибку в показаниях.

Чтобы этого избежать, RTD обычно подключается к схеме через мост Уитсона, который имеет дополнительные соединительные провода для компенсации. Или же применяется подключение к источнику постоянного тока.

Термопары как измерительные температурные датчики

Термопара представляет наиболее распространенный вид температурных датчиков. Термопара как датчик температуры популярна благодаря нескольким факторам:

  • несложному устройству,
  • простоте использования,
  • скорости реакции,
  • малогабаритным размерам.

Термопары обладают непревзойденно широким температурным диапазоном среди всех существующих температурных датчиков (от -200ºC до 2000ºC). Этот вид термоэлектрических датчиков традиционно строится на соединении двух разнородных металлов — меди и константана, которые свариваются или сжимаются в единый спай.

ТЕРМОПАРА

Конструкция термопары
Принцип действия термопары: J1 – горячий спай; J2 – холодный спай; 1 – металл железо; 2 – металл константан; 3 – поток тепла; V1, V2 – разница напряжений; Vвых – напряжение выхода

Одна часть соединения называется эталонным (холодным) спаем. Другая часть — измерительным (горячим) спаем. Когда оба контакта находятся под разными температурами, на стыке используется напряжение, которое используется для измерения температурного датчика, как показано ниже.

Принцип работы датчика температуры — термопары

Принцип работы термопары прост. Слияние двух разнородных металлов образует «термоэлектрический» эффект, который дает постоянную разность потенциалов всего в несколько милливольт (мВ).

Разность напряжений между двумя переходами называется «эффектом Зеебека». Поскольку градиент температуры генерируется вдоль проводящих контактов, создающих ЭДС, выходное напряжение термопары становится зависимым от изменений окружающей среды.

Если оба контакта находятся при одинаковой окружающей среде, разность потенциалов на двух переходах равна нулю. Другими словами, напряжение отсутствует, когда V1 = V2. Однако если соединения подключены внутри схемы и находятся под разными температурами, ситуация меняется.

Появляется выход напряжения относительно разницы значений между двумя переходами V1 — V2. Это различие в напряжении будет увеличиваться с температурой до тех пор, пока не будет достигнут пиковый уровень напряжения перехода. Этот момент будет определяться характеристиками двух разных разнородных металлов.

ЦИФРОВОЙ

Исполнение датчика термопары
Конструкция одного из вариантов датчика на термопаре: 1 – спай; 2 – специальная проводка типа «J»; 3 – оболочка их нержавеющей стали; 4 – настраиваемый уплотнительный фитинг; 5 – армирование из нержавеющей стали

Термопары изготавливаются из различных материалов, что позволяет измерять экстремальные температуры в диапазоне от -200°С до + 2000°С. Благодаря такому большому выбору материалов и диапазону измерений, были разработаны международно-признанные стандарты в комплекте с цветовыми кодами термопары.

Цветовые коды позволят пользователю выбрать правильный датчик температуры на базе термопары для конкретного применения. Ниже в качестве примера приведена таблица — британский цветовой код стандартных термопар:

Код Проводники + / — Рабочий диапазон, °C Маркировка цветом
E нихром / константан — 200 … + 900 коричневый
J железо / константан 0 …+ 750 чёрный
K нихром / алюмоникель — 200 … + 1250 красный
N никросил / нисил 0 … + 1250 оранжевый
T медь / константан — 200 … + 350 синий
U Медь / никелин 0 … + 1450 зелёный

Три наиболее распространенных материала термопар, используемые для общего измерения окружающей среды:

  • железо-константан (тип J),
  • медь-константан (тип T),
  • никель-хром (тип K).

Выходное напряжение от термопары очень мало, всего несколько милливольт (мВ) для изменения разности температур на 10°C. Поэтому по причине малого напряжения, на выходе обычно требуется какая-нибудь форма усиления.

Схемы усиления на датчик температуры — термопару

Тип усилителя, дискретного или операционного, необходимо тщательно подбирать, поскольку для предотвращения повторной калибровки термопары с частыми интервалами требуется стабильность дрейфа. Соответственно, предпочтительным видится применение модулятора и усилителя измерительного типа для большинства температурных зондов.

На видеоролике выше демонстрируется работа термопары, которой наделён системный датчик температуры чиллера. Также в рамках видео отмечается, как проверить работоспособность прибора и восстановить прибор в случае утери рабочего сопротивления.

Другие приборы подобного типа

Другие типы датчиков, не упомянутые здесь, включают в себя:

  • полупроводниковые контактные датчики,
  • инфракрасные датчики,
  • датчики теплового излучения,
  • термометры медицинского назначения,
  • индикаторы цветных чернил или красителей.