Новые композитные стройматериалы для высотного строительства

Новые композитные стройматериалы для высотного строительства

Американское архитектурное бюро (SOM — Skidmore, Owings & Merrill) активно занимается исследованиями композитов на основе массивной древесины и бетона. Новый стройматериал планируется использовать в технологиях строительства высотных зданий. В частности, речь идёт о сооружении напольной части этажных секций, поддерживаемых стальной конструкцией. Традиционно многоэтажные конструкции создаются на базе металла и бетона. Этот вариант не удовлетворяет всех потребностей конечных владельцев недвижимости. Поэтому новые стройматериалы для сферы строительства многоэтажных зданий, способные урезать господство бетона и стали, всегда были ожидаемы.

Новые стройматериалы для высоток

Одной из причин ограничения внедрения древесины в конструкции высотных строений видится незавершённое до конца тестирование подобных строительных систем на их эксплуатационные качества, в том числе прочность.

И вот совсем недавно (2016-2017 гг.) появилась новая архитекторская идея, где используются конструкционные стальные колонны и балки в ассоциации с композитным стройматериалом — кросс-шихтованной древесиной (CLT) и системой бетонных полов.

Именно такую конструкцию предложено внедрять в современных проектах зданий повышенной этажности.

Новые технологии стройки высотных зданий
Ассоциация бетона с древесиной, подкреплённая сталью, карбоном и эпоксидными смолами, обещает стать инновационным прорывом в области строительства небоскрёбов

Американский институт стальных конструкций (AISC) завершил исследования в области применения стальных и деревянных систем высотного строительства.

В результате родился реальный конкурент традиционным схемам – новая система древесно-бетонных полов, специально предназначенная под высотные сооружения.

Композитные полы городских небоскрёбов

Сталь и древесина обладают естественными преимуществами и недостатками. Устойчивые структуры стремятся использовать минимальное количество материалов и минимизировать влияние углеродного следа.

Гибридные (композитные) структуры используют каждый материал там, где он наиболее эффективен, что снижает потребление стройматериалов в целом.

Структура композитного стройматериала
Структура композитного пола: 1 — укрепляющий слой; 2 — бетонный верхний слой; 3 — поперечные соединители композита; 4 — пятислойная кросс-шихтованная деревянная панель

Гибридный (композитный) подход часто является наиболее экономичным решением с точки зрения стоимости и последствий углеродного следа.

Поэтому строительство деревянных конструкций комплексным (гибридным) решением может стать более выгодным.

Техническое примечание:

Углеродный след (carbon footprint) – массовая доля выбросов парниковых газов прямым или косвенным путём:

  • людьми,
  • производимыми продуктами,
  • промышленными организациями,
  • мероприятиями разного рода деятельности.

(Из определений UK Carbon Trust – Углеродный фонд Великобритании).

Исследования нового композитного стройматериала

Оценивая разные механизмы сдвиговых усилий соединений между верхним слоем бетона толщиной 57 – 60 мм и слоем кросс-шихтованной древесины толщиной 170 – 172 мм, американские исследователи остановились на применении перфорированного металла и эпоксидной смолы в качестве сцепки.

Именно этот тандем, по мнению учёных, способствует достижению идеальных параметров по сдвиговым скольжениям.

Экспериментальная композитная панель для пола
Экспериментальная композитная панель для пола высотного здания. Из таких панелей собирается цельный проектный экземпляр. Этот стройматериал способен выдержать значительную нагрузку

Для тестирования была изготовлена полноразмерная композитная панель пола размерами 2,5 х 11 м. Образец нагружался массой, примерно 37 тонн, что в восемь раз выше проектной нагрузки.

Таким образом, сила давления как возможный фактор ограничения применения композитного пола, не нашла места в исследовательском отчёте.

Структурная схема точки опоры
Структурная схема точки опоры: 1 — скрепляющий слой; 2 — верхний бетонный слой; 3 — колонна; поперечный соединитель композита; 5 — самонарезающий конструкционный винт; 6 — соединитель балки; 7 — пятислойная кросс-шихтованная панель; 8 — пятислойная кросс-шихтованная панель пола

Исключение составляет «обугливание» древесины в случае пожара, что резко снижает нагрузочные способности композитной бетонно-древесной конструкции полов высотных зданий.

Ограничения применения бетонно-древесного композита

Львиная доля исследований неизбежно порождает дополнительные вопросы именно в моменты изучения тестируемых образцов стройматериалов. Так и здесь, не обошлось без уточнения аналитических методов:

  • изучения составных систем пола на основе панелей CLT и бетона;
  • разработки руководящих принципов проектирования композитов;
  • разработки положений на гибридные системы пола бетон-дерево.

Всё это пока что остаётся без должного ответа и не позволяет без каких-либо ограничений использовать композитный бетонно-древесный стройматериал при строительстве высотных зданий.

Тем не менее, проект SOM «Деревянная башня», можно сказать, дал новую жизнь технологиям высотного строительства, предложив сооружение конструкций на базе стальной системы с внедрением композитной структуры пола.

Элементы новой технологии
Элементы новой технологии: 1 — стальная колонна; 2 — соединительная торцевая пластина; 3 — стальной луч наращивания; 4 — кросс прокатные напольные плиты; 5 — верхний бетонный слой; 6 — укрепляющий слой; 7 — крепления композита

Чтобы не быть голословными, исследователи разработали эталонный проект девятиэтажной башни, которая недавно была возведена в Калифорнии.

Высотный дом с полами из нового стройматериала

Модель башни выстроена с применением ассиметричных широко-фланцевых стальных балок. На эти балки опираются панели CLT и крепятся специальными фланцами.

При этом в области посадочных точек сделаны технологические вырезы, дабы обеспечить посадку лицевой стороны панелей заподлицо.

Предполагалось, что пересечение бетонного слоя панели со сталью также позволит создать композитную связь, но тестирования на этот счёт ещё не проводилось.

Эталон здания, где используются пост напряженные 200-мм бетонные плоские панели, имеет типичный пролёт колонн 8,5 х 9,75 м.

Смоделированная композитная система предполагает типичный пролёт колонн 8,5 х 7,5 м, при максимальном охвате древесиной композитной системы с глубиной напольного покрытия 270 мм.

Согласно отчету, смоделированная композитная система по размерам больше, чем традиционно предлагаемые габариты.

Кросс-ламинированное напольное покрытие
Конечный результат: 1 — кросс-ламинированная панель; 2 — луч наращивания стальной; 3 — пластина торцевого соединения; 4 — стальная колонна; 5 — бетонный слой композитного пола

После проверки различных сценариев: сочленения стройматериалов, предположений относительно объема работ, условий загрузки, соображений планирования, отчет показал очевидные детали. Жизнеспособность предлагаемого композитного стройматериала определит:

  • рыночный спрос,
  • практичность эксплуатации,
  • эффективность строительства,
  • общая стоимость проекта.

Между тем здания на основе стали и массивной древесины могут возводиться быстрее, чем каркасно-бетонные здания, при условии предварительного производства гибридных элементов.

Также подчёркивается: высотное здание, возведённое на новых композитных стройматериалах, весит примерно на 65% меньше традиционного проекта. Этот фактор снижает затраты на фундамент, сейсмическую защиту и сокращает время строительства.

В исследовании делается вывод о том, что два типа зданий – на композитных стройматериалах и без таковых, могут быть сопоставимы по стоимости в пределах 10% относительно один другого, в зависимости от специфики проекта и текущих рыночных условий.

Как склеивать древесину — столярная практика


Написано по материалам: Architectmagazine


Добавить комментарий

Внимание: Спам не пройдёт. Работает фильтрация комментариев. *